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Abstract. The quantum interference effects induced by the Wess-Zumino term, or Berry phase are studied
theoretically in resonant quantum coherence of the magnetization vector between degenerate states in
nanometer-scale single-domain ferromagnets in the absence of an external magnetic field. We consider the
magnetocrystalline anisotropy with trigonal, tetragonal and hexagonal crystal symmetry, respectively. By
applying the periodic instanton method in the spin-coherent-state path integral, we evaluate the low-lying
tunnel splittings between degenerate excited states of neighboring wells. And the low-lying energy level
spectrum of mth excited state are obtained with the help of the Bloch theorem in one-dimensional periodic
potential. The energy level spectrum and the thermodynamic properties of magnetic tunneling states are
found to depend significantly on the total spins of ferromagnets at sufficiently low temperatures. Possible
relevance to experiments is also discussed.

PACS. 75.45.+j Macroscopic quantum phenomena in magnetic systems – 75.10.Jm Quantized spin models
– 03.65.Bz Foundations, theory of measurement, miscellaneous theories (including Aharonov-Bohm effect,
Bell inequalities, Berry’s phase)

1 Introduction

In recent years there has been great experimental and
theoretical effort to observe and interpret macroscopic
quantum tunneling (MQT) and coherence (MQC) in
nanometer-scale single-domain magnets [1]. One notable
subject is that the topological Berry or Wess-Zumino
phase [2,3] can lead to remarkable spin-parity effects.
Loss et al. [4], and von Delft and Henly [5] showed that
the tunnel splitting is suppressed to zero for half-integer
total spins in biaxial ferromagnetic (FM) particles due
to the destructive phase interfererence between topologi-
cally different tunneling paths. However, the phase inter-
ference is constructive for integer spins, and hence the
splitting is nonzero [4,5]. While spin-parity effects are
sometimes be related to Kramers degeneracy [4,5], they
typically go beyond the Kramers theorem in a rather
unexpected way [6,7]. Barnes et al. proposed the aux-
iliary particle method to study the model for a single
large spin subject to the external and anisotropy fields,
and discussed the spin-parity effects [8]. Similar effect was
found in antiferromagnetic (AFM) particles, where only
the integer excess spins can tunnel but not the half-integer
ones [11,12]. Recently, topological phase interference ef-
fects were investigated extensively in FM and AFM par-
ticles in a magnetic field, [6,9,10,13,14] and in the sys-
tems with different symmetries [15–17]. Spin tunneling
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and quantum oscillation at excited states were studied
for biaxial FM particles at zero magnetic field [18], and
at a field along the hard axis [19]. One recent experi-
ment [20] was performed to measure the tunnel splittings
in molecules Fe8, and a clear oscillation of the splitting as
a function of the field along the hard axis was observed,
which is a direct evidence of the role of the topological
spin phase (Berry phase) in the spin dynamics of these
molecules.

It is noted that the previous results of topological
phase interference effects were obtained for the tunnel
splittings of the ground state in FM particles with dif-
ferent crystal symmetries [16], or for the excited states in
FM particles with simple biaxial crystal symmetry [18].
The purpose of this paper is to study the spin-parity ef-
fects at excited states for FM particles with a more com-
plex (than biaxial) structure, such as trigonal, tetrago-
nal, and hexagonal symmetry around ẑ, which have three,
four, and six degenerate easy directions in the basal plane.
Integrating out the momentum in the path integral, the
spin tunneling problem is mapped onto a particle moving
problem in one-dimensional periodic potential V (φ). By
applying the periodic instanton method, we obtain the
low-lying tunnel splittings between mth degenerate ex-
cited states of neighboring wells. The periodic potential
V (φ) can be regarded as a one-dimensional superlattice.
The general translation symmetry results in the energy
band structure, and the low-lying energy level spectrum of
excited states is obtained by using the Bloch theorem and
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the tight-binding approximation. Our results show that
the excited-state tunnel splittings depend significantly on
the parity of the total spins. And the structure of energy
level spectrum for the trigonal, tetragonal and hexagonal
crystal symmetry is found to be much more complex than
that for the biaxial crystal symmetry. Another important
conclusion is that the spin-parity effects can be reflected in
thermodynamic quantities of the low-lying tunneling lev-
els. Thermodynamic property (such as the specific heat)
of the magnetic tunneling states is evaluated, and is found
to be strongly parity dependent on the total spins, which
may provide an experimental test for the topological phase
interference effects. And the spin-parity effect is lost at
high temperatures.

The remaining part of this paper is organized as fol-
lows. In Section 2, we review briefly some basic ideas of
MQT and MQC in FM particles, and discuss the funda-
mentals concerning the computation of excited-level split-
tings in the double-well-like potential. In Sections 3 and
4, we study the spin tunneling between degenerate ex-
cited states in FM particles with the trigonal, tetragonal
and hexagonal symmetry. The conclusions are presented
in Section 5.

2 Spin tunneling in FM particles

For a spin tunneling problem, the tunnel splitting for
MQC or the decay rate for MQT is determined by the
imaginary-time transition amplitude from an initial state
|i〉 at τ = −T/2 to a final state |f〉 at τ = T/2 in the
spin-coherent-state representation as [3,31,32]

Ufi = 〈f | e−HT |i〉 =
∫

DΩ exp (−SE) , (1)

where DΩ = sin θdθdφ. The paths appearing in
equation (1) are fixed at the end points τ = ± T/2. For a
system with equivalent double wells, we let |E〉+ and |E〉−
be eigenstates of the same energy E in the right- and left-
hand wells, respectively. The small contribution due to
quantum tunneling leads to the effect of level splitting
∆E, which removes the asymptotic degeneracy. The cor-
responding eigenstates of the Hamiltonian separate into
odd and even states |E〉o and |E〉e which are superposi-
tions of |E〉+, |E〉− such that |E〉o = 1√

2

(
|E〉+ − |E〉−

)
,

and |E〉e = 1√
2

(
|E〉+ + |E〉−

)
with eigenvalues E ±∆E,

respectively. In the limit that T → ∞, one expects
that the amplitude for the transition from state |E〉−
in the left-hand well to the state |E〉+ in the right-
hand well in the time interval T as + 〈E| e−HT |E〉− →
exp (−ET ) sinh (∆ET ). Therefore the tunnel splitting∆E
is obtained if the transition amplitude can be calculated.
The decay rate Γ from the metastable state for MQT can
be evaluated by a similar procedure. The Euclidean action

SE in equation (1) is [3,31,32]

SE (θ, φ) =
V

~

×
∫

dτ
[
i
M0

γ

(
dφ
dτ

)
− i

M0

γ

(
dφ
dτ

)
cos θ +E (θ, φ)

]
,

(2)

where M0 = |M| = ~γS/V , V is the volume of the parti-
cle, γ is the gyromagnetic ratio, and S is the total spins. It
is noted that the first two terms in equation (2) define the
Berry or Wess-Zumino term which has a simple topologi-
cal interpretation. For a closed path, this term equals −iS
times the area swept out on the unit sphere between the
path and the north pole. The first term in equation (2) is
a total imaginary-time derivative, which has no effect on
the classical equations of motion, but it is crucial for the
spin-parity effects [4,5].

In the semiclassical limit, the instanton’s contribution
to Γ or ∆E (not including the topological Wess-Zumino
phase) is given by [22]

Γ (or ∆E) = Aωp

(
Scl

2π

)1/2

e−Scl , (3)

where ωp is the oscillation frequency in the well, Scl is the
classical action, and the prefactor A originates from the
quantum fluctuations about the classical path. It is noted
that equation (3) is based on tunneling at the ground
state, and the temperature dependence of the tunneling
frequency (i.e., tunneling at excited states) is not taken
into account. The instanton technique is suitable only for
the evaluation of the tunneling rate at the vacuum level,
since the usual (vacuum) instantons satisfy the vacuum
boundary conditions. Recently, Liang et al. [23] devel-
oped new types of pseudoparticle configurations which
satisfy periodic boundary condition (i.e., periodic instan-
tons or nonvacuum instantons). For a particle moving in
a double-well-like potential U (x), the WKB method gives
the tunnel splitting of excited states at an energy E > 0
as [24,25,33]

∆E =
ω (E)
π

exp [−S (E)] , (4)

with the imaginary-time action is

S (E) = 2
√

2m
∫ x2(E)

x1(E)

dx
√
U (x)−E, (5)

where x1,2 (E) are the turning points for the particle oscil-
lating in the inverted potential −U (x)ω (E) = 2π/t (E)
is the energy-dependent frequency, and t (E) is the period
of the real-time oscillation in the potential well,

t (E) =
√

2m
∫ x4(E)

x3(E)

dx√
E − U (x)

, (6)

where x3,4 (E) are the classical turning points for the
particle oscillating inside U (x). The functional-integral
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and the WKB method showed that for the potentials
parabolic near the bottom the result (4) should be multi-
plied by

√
π
e

(2n+1)n+1/2

2nenn! [25,33]. This factor is very close to
1 for all n: 1.075 for n = 0, 1.028 for n = 1, 1.017 for n = 2,
etc. Stirling’s formula for n! shows that this factor trends
to 1 as n→∞. Therefore, this correction factor, however,
does not change much in front of the exponentially small
action term in equation (4). Recently, the crossover from
quantum to classical behavior and the associated phase
transition have been investigated extensively in nanospin
systems [25–29] and other systems [30].

3 MQC for trigonal crystal symmetry

In this section, we consider a spin system with trigonal
crystal symmetry, i.e., which has three consecutive energy
minima in a period. Now the total energy is

E (θ, φ) = K1 cos2 θ −K2 sin3 θ cos (3φ) +E0, (7)

where K1 and K2 are the magnetic anisotropic constants
satisfying K1 � K2 > 0, and E0 is a constant which
makes E (θ, φ) zero at the initial state. As K1 � K2 >
0, the magnetization vector is forced to lie in the θ =
π/2 plane, so the fluctuations of θ about π/2 are small.
Introducing θ = π/2+α (|α| � 1), equation (7) reduces to

E (α, φ) ≈ K1α
2 + 2K2 sin2 (3φ/2) . (8)

The ground state corresponds to the magnetization vector
pointing in one of the three degenerate easy directions:
θ = π/2, and φ = 0, 2π/3, 4π/3, other energy minima
repeat the three states with period 2π. Performing the
Gaussian integration over α, we can map the spin system
onto a particle moving problem in one-dimensional poten-
tial well. Now the transition amplitude becomes

Ufi = exp [−iS (φf − φi)]
∫

dφ exp (−SE [φ]) ,

= exp [−iS (φf − φi)]

×
∫

dφ exp

{
−
∫

dτ

[
1
2
m

(
dφ
dτ

)2

+ V (φ)

]}
, (9)

with m = ~S2/2K1V , and V (φ) = 2 (K2V/~) sin2 (3φ/2).
It is noted that the total derivative in equation (2), when
integrated, gives an additional phase factor to the transi-
tion amplitude (9) which depends on the initial and final
values of φ. For the trigonal symmetry, this phase fac-
tor in equation (9) is exp (−i2πS/3). The potential V (φ)
is periodic with period 2π/3, and there are three min-
ima in the entire region 2π. We may look at V (φ) as a
superlattice with lattice constant 2π/3 and total length
2π, and we can derive the energy spectrum by applying
the Bloch theorem and the tight-binding approximation.
The translational symmetry is ensured by the possibility
of successive 2π extensions.

The periodic instanton configuration φp which min-
imizes the Euclidean action in equation (9) satisfies

the equation of motion

1
2
m

(
dφp

dτ

)2

− V (φp) = −E, (10)

where E > 0 is a constant of integration, which can be
viewed as the classical energy of the pseudoparticle con-
figuration. Then we obtain the kink-solution as

sin2

(
3
2
φp

)
= 1− k2sn2 (ω1τ, k) , (11)

where sn(ω1τ, k) is the Jacobian elliptic sine function of
modulus k,

k2 =
n2

1 − 1
n2

1

, (12)

with ω1 =3
√

2 (V/~S)
√
K1K2, and n1 =

√
2K2V/~E > 1.

In the low energy limit, i.e., E → 0, k → 1, sn(u, 1) →
tanhu, we have

sin2

(
3
2
φp

)
=

1
cosh2 (ω1τ)

, (13)

which is exactly the vacuum instanton solution derived in
reference [16].

The Euclidean action of the periodic instanton config-
uration equation (11) over the domain (−β, β) is found
to be

Sp =
∫ β

−β
dτ

[
1
2
m

(
dφp

dτ

)2

+ V (φp)

]
= W + 2Eβ,

(14)

with

W =
25/2

3
S

√
K2

K1

[
E (k)−

(
1− k2

)
K (k)

]
, (15)

where K (k) and E (k) are the complete elliptic integral
of the first and second kind, respectively. Now we discuss
the low energy limit where E is much less than the bar-
rier height. In this case, k′2 = 1 − k2 = ~E/2K2V � 1,
so we can perform the expansions of K (k) and E (k) in
equation (15) to include terms like k′2 and k′2 ln (4/k′),

E (k) = 1 +
1
2

[
ln
(

4
k′

)
− 1

2

]
k′2 + · · · ,

K (k) = ln
(

4
k′

)
+

1
4

[
ln
(

4
k′

)
− 1
]
k′2 + · · · (16)

With the help of small oscillator approximation for en-
ergy near the bottom of the potential well, E = εtri

m =
(m+ 1/2)ω1, equation (15) is expanded as

W =
25/2

3

√
K2

K1
S −

(
m+

1
2

)
+
(
m+

1
2

)
ln

[
3

29/2

√
K1

K2

1
S

(
m+

1
2

)]
· (17)
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Then the general formula (4) gives the low-lying energy
shift of mth excited states for FM particles with trigonal
crystal symmetry at zero magnetic field as

~∆εtri
m =

1
m!

2
9
2(m+ 1

2 )

3(m− 1
2 )π

1
2

× (K1V )λ
1
2 (m+ 3

2)S(m− 1
2) exp

(
−25/2

3
λ1/2S

)
,

(18)

where λ = K2/K1, and S is the total spin.
It is noted that ~∆εtri

m is only the level shift induced by
tunneling between degenerate excited states through a sin-
gle barrier. The periodic potential V (φ) can be regarded
as a one-dimensional superlattice. The general translation
symmetry results in the energy band structure, and the
energy spectrum could be determined by the Bloch the-
orem. It is easy to show that if εtri

m are the degenerate
eigenvalues of the system with infinitely high barrier, the
energy level spectrum is given by the following formula
with the help of tight-binding approximation,

Etri
m = εtri

m − 2∆εtri
m cos [(S + ξ) 2π/3] . (19)

The Bloch wave vector ξ can be assumed to take either
of the three values −1, 0, 1 in the first Brillouin zone.
It is noted that in equation (19) we have included the
contribution of topological phase for FM particles with
trigonal crystal symmetry (i.e., 2πS/3). The low-lying en-
ergy level spectrum, which corresponds to the splittings
of mth excited state due to the resonant quantum co-
herence of the magnetization vector between energetically
degenerate states, is found to depend on the parity of to-
tal spin of FM particle significantly. If S is an integer,
the low-lying energy level spectrum is ~εtri

m −2~∆εtri
m , and

~εtri
m + ~∆εtri

m , the latter being doubly degenerate. But if
S is a half-integer, the low-lying energy level spectrum is
~εtri
m −~∆εtri

m , and ~εtri
m +2~∆εtri

m , the former being doubly
degenerate. This spin-parity effect is the result of phase
interference between topologically distinct tunneling path.

At the end of this section, we discuss the possible rel-
evance to the experimental test for spin-parity effects in
single-domain FM nanoparticles. First we discuss the ther-
modynamic behavior of this system at very low tempera-
ture T ∼ T0 = ~∆εtri

0 /kB. For FM particles with trigonal
crystal symmetry at such a low temperature, the partition
function of the ground state is found to be

Z = exp
(
−β~εtri

0

)
×
[
exp

(
±2β~∆εtri

0

)
+ 2 exp

(
∓β~∆εtri

0

)]
, (20)

where upper sign corresponds to integer spins, lower
sign corresponds to half-integer spins, and εtri

0 = ω1/2.
Then the specific heat is c = −T

(
∂2F/∂T 2

)
, with F =

−kBT lnZ. For the low temperature case, the result is

c = 18kB

(
β~∆εtri

0

)2
×

exp
(
±β~∆εtri

0

)[
exp

(
±2β~∆εtri

0

)
+ 2 exp

(
∓β~∆εtri

0

)]2 · (21)

Fig. 1. The temperature dependence of the specific heat
for integer and half-integer spins at very low temperature
0 ≤ T/T0 ≤ 1.

In Figure 1, we plot the temperature dependence of the
specific heat for integer and half-integer spins at very
low temperature 0 ≤ T/T0 ≤ 1. It is clearly shown that
the specific heat for integer spins is much different from
that for half-integer spins at sufficiently low temperatures.
When the temperature is higher ~∆εtri

0 � kBT < ~ω1, the
excited energy levels may give contribution to the parti-
tion function. Now the partition function is

Z ≈ Z0

[
1 +

(
1− e−β~ω1

) (
β~∆εtri

0

)2
I0
(

2q1e−β~ω1/2
)]
,

(22)

for both integer and half-integer spins, where Z0 =
3e−β~ω1/2/

(
1− e−β~ω1

)
is the partition function in the

well calculated for kBT � ∆U over the low-lying os-
cillatorlike states with εtri

m = (m+ 1/2)ω1, and ω1 =
3
√

2 (V/~S)
√
K1K2. I0 (x) =

∑
n=0 (x/2)2n

/ (n!)2 is the
modified Bassel function, and q1 =

(
29/2/3

)
λ1/2S > 1.

We define a characteristic temperature T̃ that is so-
lution of equation q1e−~ω1/kB eT = 1. The temperature
T̃ = ~ω1/2 ln q1 characterizes the crossover from ther-
mally assisted tunneling to the ground-state tunneling. In
Figure 2, we plot the temperature dependence of the spe-
cific heat for integer and half-integer spins at high tem-
perature 30 ≤ T/T0 ≤ 60. The result shows that the spin-
parity effect will be lost at high temperatures. The specific
heat for integer spins is almost the same as that for half-
integer spins.

4 MQC for tetragonal and hexagonal crystal
symmetries

In this section, we will apply the method in Section 3 to
study spin tunneling in FM particles with tetragonal and
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Fig. 2. The temperature dependence of the specific heat
for integer and half-integer spins at high temperature
30 ≤ T/T0 ≤ 60. Here λ = 0.001.

hexagonal crystal symmetry. For the tetragonal symmetry,

E (θ, φ) = K1 cos2 θ +K2 sin4 θ −K ′2 sin4 θ cos (4φ) +E0,
(23)

where K1 � K2, K ′2 > 0. The energy minima of this
system are at θ = π/2, and φ = 0, π/2, π, 3π/2,
and other energy minima repeat the four states with
period 2π. The problem can be mapped onto a prob-
lem of one-dimensional motion by integrating out the
fluctuations of θ about π/2, and for this case V (φ) =
2 (K ′2V/~) sin2 (2φ). Now V (φ) is periodic with period
π/2, and there are four minima in the entire region 2π. The
periodic instanton configuration with an energy E > 0 is
sin2 (2φp) = 1− k2sn2 (ω2τ, k), where k =

√
(n2

1 − 1) /n2
1,

ω2 = 25/2 (V/~S)
√
K1K ′2, and n1 =

√
2K ′2V/~E > 1.

The associated classical action is Sp = W + 2Eβ, with

W = 21/2S

√
K ′2
K1

[
E (k)−

(
1− k2

)
K (k)

]
. (24)

The general formula (4) gives the low-lying energy shift of
mth excited state as

~∆εte
m =

1
m!

2
5
2m+ 9

4

π
1
2

× (K1V )λ
1
2(m+ 3

2)S(m− 1
2 ) exp

(
−21/2λ1/2S

)
, (25)

with λ = K ′2/K1. The periodic potential V (φ) can be
viewed as a superlattice with lattice constant π/2 and to-
tal length 2π, and the Bloch theorem then gives the energy
level spectrum of mth excited state εte

m = (m+ 1/2)ω2 as
Ete
m = εte

m − 2∆εte
m cos [(S + ξ) π/2], where ξ = −1, 0, 1, 2

in the first Brillouin zone. It is easy to show that the low-
lying energy level spectrum is ~εte

m± 2~∆εte
m, and ~εte

m for
integer spins, the latter being doubly degenerate. While
the level spectrum is ~εte

m ±
√

2~∆εte
m with doubly degen-

erate for half-integer spins. At a very low temperature

T ∼ T0 = ~∆εte
0 /kB, the specific heat is

c = 4kB

(
β~∆εte

0

)2 1
1 + cosh (2β~∆εte

0 )
, (26a)

for integer spins, while

c = 2kB

(
β~∆εte

0

)2 1
cosh2

(√
2β~∆εte

0

) , (26b)

for half-integer spins. The tunneling behavior for integer
spins is almost the same as that for half-integer spins at
high temperature ~∆εte

0 � kBT < ~ω2.
For the case of hexagonal symmetry,

E (θ, φ) = K1 cos2 θ +K2 sin4 θ

+K3 sin6 θ −K ′3 sin6 θ cos (6φ) +E0, (27)

where K1 � K2,K3,K
′
3 > 0. The easy directions are at

θ = π/2, and φ = 0, π/3, 2π/3, π, 4π/3, 5π/3, and other
energy minima repeat the six states with period 2π. For
the present case, V (φ) = 2 (K ′3V/~) sin2 (3φ) is periodic
with period π/3, and there are six minima in the entire
region 2π. The periodic instanton configuration at a given
energy E > 0 is sin2 (3φp) = 1 − k2sn2 (ω3τ, k), where
k =

√
(n2

1 − 1) /n2
1, ω3 =

(
3× 23/2

)
(V/~S)

√
K1K ′3, and

n1 =
√

2K ′3V/~E > 1. Correspondingly, the classical ac-
tion is Sp = W + 2Eβ, with

W = 23/2S

√
K ′3
K1

[
E (k)−

(
1− k2

)
K (k)

]
, (28)

and the low-lying energy shift of mth excited state is

~∆εhe
m =

1
m!

2
7
2m+ 11

4

3m−
1
2 π

1
2

× (K1V )λ
1
2 (m+ 3

2)S(m− 1
2) exp

(
−23/2

3
λ1/2S

)
, (29)

with λ = K ′3/K1. Now V (φ) can be regarded as a
one-dimensional superlattice with lattice constant π/3.
By applying the Bloch theorem and the tight-binding
approximation, we obtain the energy level spectrum of
mth excited state εhe

m = (m+ 1/2)ω3 as Ehe
m = εhe

m −
2∆εhe

m cos [(S + ξ)π/3], where ξ = −2,−1, 0, 1, 2, 3. If
S is an integer, the low-lying energy level spectrum is
~εhe
m ± 2~∆εhe

m , and ~εhe
m ± ~∆εhe

m , the latter two lev-
els being doubly degenerate. If S is a half-integer, the
level spectrum is ~εhe

m ±
√

3~∆εhe
m , and ~εhe

m , all three
levels being doubly degenerate. Then the specific heat at
sufficiently low temperatures is

c = 2kB

(
β~∆εhe

0

)2
×
[
4+4 cosh

(
β~∆εhe

0

)
+cosh

(
2β~∆εhe

0

)
cosh

(
β~∆εhe

0

)][
cosh

(
2β~∆εhe

0

)
+2 cosh

(
β~∆εhe

0

)]2 ,

(30a)
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for integer spins, while

c = 6kB

(
β~∆εhe

0

)2 2 + cosh
(√

3β~∆εhe
0

)[
1 + 2 cosh

(√
3β~∆εhe

0

)]2 , (30b)

for half-integer spins.
In brief, the low-lying energy level spectrum and the

heat capacity of the magnetic tunneling states for tetrag-
onal and hexagonal symmetry are found to depend on the
parity of the total spins, resulting from the Wess-Zumino
phase interference between topologically distinct tunnel-
ing paths. And this spin-parity or topological phase inter-
ference effect will be lost at high temperatures.

5 Conclusions

In summary, we have investigated the topological phase
interference effects in spin tunneling at excited levels for
single-domain FM particles with trigonal, tetragonal, and
hexagonal crystal symmetries. The low-lying tunnel split-
tings between mth degenerate excited states of neighbor-
ing wells are evaluated with the help of the periodic in-
stanton method, and the energy level spectrum is obtained
by applying the Bloch theorem and the tight-binding
approximation in one-dimensional periodic potential.

One important conclusion is that for all the three kinds
of crystal symmetries, the low-lying energy level spec-
trum for integer total spins is significantly different from
that for half-integer total spins, resulting from the Berry
phase interference between topologically distinct tunnel-
ing paths. For FM particles with simple biaxial crystal
symmetry, which has two degenerate easy directions in the
basal plane (i.e., the double-well system), it has been the-
oretically shown that the tunnel splitting is suppressed to
zero for half-integer spins due to the destructive phase in-
terference between topologically different tunneling paths
connecting the same initial and final states. However,
the structure of low-lying tunneling level spectrum for
the trigonal, tetragonal, or hexagonal crystal symmetry
is found to be much more complex than that for the bi-
axial crystal symmetry. The low-lying energy level spec-
trum can be nonzero even if the total spin is a half-integer
for the trigonal, tetragonal, or hexagonal crystal symme-
try. Note that these spin-parity effects are of topological
origin, and therefore are independent of the magnitude of
total spins of FM particles. The heat capacity of low-lying
magnetic tunneling states is evaluated and is found to de-
pend significantly on the parity of total spins for FM par-
ticles with different crystal symmetries at sufficiently low
temperatures, providing a possible experimental method
to examine the theoretical results on topological phase in-
terference effects. And the spin-parity effects will be lost
at high temperatures. Our results presented here should
be useful for a quantitative understanding on the topo-
logical phase interference or spin-parity effects in resonant
quantum tunneling of magnetization in single-domain FM
particles with different crystal symmetries.

More recently, Wernsdorfer and Sessoli [20] have mea-
sured the tunnel splittings in the molecular Fe8 clusters,

and have found a clear oscillation of the tunnel splitting
with the field along hard axis, which is a direct evidence of
the role of the Berry phase in the spin dynamics of these
molecules. It is noted that the theoretical results presented
in this paper are based on the instanton method, which
is semiclassical in nature, i.e., valid for large spins and in
the continuum limit. Whether the instanton method can
be applied in studying the spin dynamics in molecular
clusters with S = 10 (such as Fe8) is an open question.

The theoretical calculations performed in this paper
can be extended to the FM and AFM particles in a mag-
netic field. Work along this line is still in progress. We
hope that the theoretical results presented here will stim-
ulate more experiments whose aim is observing the topo-
logical phase interference effects in nanometer-scale single-
domain magnets.
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Prof. J.-Q. Liang and Prof. F.-C. Pu for stimulating dis-
cussions. J.-L. Zhu and R.L. would like to thank Prof.
W. Wernsdorfer and Prof. R. Sessoli for providing their
paper (Ref. [20]).
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